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Abstract  —  A system approach based on the transverse-

resonance technique and well-equipped modeling system is 
used to calculate the eigen-mode spectrum of multi-
conductor lines with piece-wise continuous coordinate 
boundaries of their cross-section. The exact models of the 
multi-layer circuits are built with the mode-matching and 
generalized S-matrix techniques. Viability of the created 
program tools is demonstrated with the examples of a multi-
turn loop inductor and a third-order low-pass filter. 
 

I. INTRODUCTION 

Modeling of multi-layer circuits is now a very important 
problem in applied electromagnetics [1, 2]. Instead of the 
layer-to-layer circuit analysis [2], it is possible to consider 
the circuit structure in a longitudinal direction across the 
layers. In doing so, the circuit structure may be interpreted 
as a sequence of junctions of some lines of complicated 
cross-sections. One of the most popular techniques for 
computing the eigen-modes of such transmission lines is 
the transverse resonance method. It is based on the 
decomposition of a line cross-section into fragments with 
the known scattering properties. The availability of 
modeling systems equipped with tools for the 
electromagnetic assembling of scatterers by the 
generalized S-matrix technique as well as an advanced 
library of waveguide key elements makes it possible to 
solve efficiently fairly large classes of eigen-mode 
problems.  

The goal of the given work is to demonstrate a unified 
approach to the calculation of the full-wave spectrums of 
complicated lines and to analyze the corresponding 
scattering problems. The modified version of the modeling 
system [3] is employed both at the stage of building the 
mode bases for various lines and at the final stage of 
calculating the frequency response of an integrated circuit. 
The proposed approach allows taking into account the 
finite thickness of conductors that was a problem in [2] 
and at using the commercial software products built on the 
method of moments.  

The main philosophy behind the proposed approach is 
demonstrated by the analysis of a loop-type element 

shown in Fig. 1. According to the proposed approach, the 
loop topology is represented as a set of regular sections of 
multi-conductor transmission lines with a rectangular 
enclosure filled by an isotropic dielectric medium. The 
cross-sections of the obtained lines are shown in Fig. 2. 
Cascaded junctions of such lines forms the analyzed 
structure. Note that a segment of line B in Fig. 2 forms in 
particular two via holes.  

The calculation of the characteristics of the loop 
requires a preliminary analysis of the full spectrum of 
TEM, TE and TM modes in separate lines to use further 
the mode-matching method for the calculation of the S-
matrixes of the plane junctions of those lines. 

II. TE AND TM MODE BASIS 

Algorithms for obtaining the desired spectrum of TE 
and TM modes are based on the solutions of two-
dimensional homogeneous boundary-value problems 
formulated in terms of Hz or Ez field components of TE or 
TM modes, correspondingly. The desired solutions are 
obtained in two steps. Considering the separate line cross-
section as a set of key-elements (such as shortings, N-
furcations, steps, and so on) in a y-directed parallel-plate 
waveguide, we have to calculate their generalized S-
matrices. Following that, the assembling of the key-
elements in a certain order is performed by the generalized 
S-matrix technique. The homogeneous matrix equation or 
a system of such equations is the result of this step. The 
unknowns in those equations are the amplitudes of the 
forward and backward modes traveling in the y-direction 
in parallel-plate waveguide sections (partial domains) 
between the key-elements. Nontrivial solutions of the 
homogeneous problems describe the desired spectrum of 
TE or TM modes.  

The above homogeneous matrix equations may be 
formulated relative to the amplitudes of modes traveling in 
one of chosen partial domains (for example, in the first or 
last domain for the lines in Fig. 2), or in several domains, 
or in all the domains. The first algorithm generates a 
small-order determinant but it is characterized by a steep 
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frequency response in the vicinity of the determinant 
zeros. The other disadvantage is connected with a possible 
field localization of one of the modes (especially, TM 
modes) in a domain other than a chosen one. At a weak 
electromagnetic coupling of the chosen domain with the 
domain of the field localization, some of the determinant 
zeros may be omitted. 

The second algorithm based on forming a homogenous 
matrix equation connected with the mode amplitude 
vectors in some of the partial domains are more time-
consuming but the frequency dependence of the 
corresponding determinant becomes smoother. In both the 
above-described algorithms, the problem of parasitic poles 
near the cutoff frequencies of some domains may appear. 
It makes the process of searching for the line eigen-modes 
more difficult. 

The third algorithm is built with taking into account the 
couplings between the vectors of modes traveling in all the 
partial domains. Since in the general case not all the 
partial domains are coupled with each other, the matrix 
operator contains a great number of zero elements. On the 
one hand, it leads to a more time-consuming algorithm. 
On the other hand, the determinants generated by such an 
algorithm do not have parasitic poles, their frequency 
dependence is fairly smooth, and determinant zeros are 
localized easily. 

All the above-described algorithms are three-steps ones. 
In the first step, a rough localization of zeros of the 
corresponding determinant is performed. It is based on 
searching the frequencies at passing of which the 
complex-valued determinant changes its sign. In the 
second step, the rough localized zeros are refined by 
Newton’s method. Basing on the results of the latter, the 
third step consists in the solution of the homogenous 
matrix equations to obtain the amplitude vectors of modes 
traveling in each partial domain of the considered line 
cross-section. 

III. TEM MODE BASIS 

The transverse resonance method can be also used for 
the determination of the TEM modes fields with taking 
into account their possible degeneration in the case of 
multi-conductor lines. In contrast to TE and TM modes, 
the problem on TEM modes may be formulated as a three-
dimensional one. For that, a half-wave resonator built by a 
multi-conductor line has to be considered. In doing so, the 
TEM mode fields are obtained by superposition of the TE 
and TM modes traveling in the y-direction of such a 
resonator. Such an approach was repeatedly used in the 
case of single-conductor transmission lines with inner 
conductors of various forms (see, for instance, [4]). 

Following to the above concept, we come to the 
problem of determination of the cross (to the resonator 
axis) fields of the half-wave resonator’s TEM oscillations 
at the known resonant frequency 0 / 2f c d=  where c is the 
free-space light velocity and d is the resonator length. 
Unlike the problem on the higher-order mode spectrum, 
the transverse resonance condition is formulated for the 
superposition of TEm1 and TMm1 modes traveling in the y-
directed partial rectangular waveguides. If the line being 
analyzed has N inner conductors, then the problem of 
determination of the eigen-fields of N-times degenerated 
TEM modes appears. 

To eliminate the degeneration of the eigen-frequencies 
of half-wave TEM mode resonators, an artificial approach 
was used. It consists in an insertion of discontinuities at 
resonator ends. As discontinuities, steps of a small height 

( ) / 2i∆  were inserted symmetrically to both resonator 
ends but only for some partial domains forming the line 
cross-section. TEM modes with a various field structure 
will react to such steps in different ways. Due to that, a 
splitting of the resonator’s degenerated eigen-frequencies 
is expected. 

Let us denote the spectrum of split eigen-frequencies as 
( ) , 1,...kf k N= . It is easy to notice that 

( ) ( )( )
0 max max/ 2( )s skf f f c d< < = − ∆  where ( )

max
s∆  corresponds 

to the s-th domain with a maximum step height value. 
Finally, the problem is reduced to the search of N zeros of 
the corresponding matrix determinant over the range 

( )
0 max

sf f f< < . As experience showed, the choice of equal-
step resonator loads with ( )s∆ = ∆  makes the problem on 
determining the spectrum of TEM modes much easier. 

For the real choice of ∆ , one should take into account 
two factors. On the one hand, it is desirable to choose the 
value of ∆  as small as possible, in order to minimize the 
difference of the object being considered from the non-
perturbed λ0/2-resonator in general, and in order to reduce 
the level of superposed TEmn and TMmn modes with 

3,5,...,n =  in particular. The latter modes are generated 
due to the steps inserted to a part of partial domains. Let 
us note that already at 2/ 10d −∆ ≈  the amplitudes of TEm3 
and TMm3 modes turn out to be three or four orders lower 
than the amplitudes of TEm1 and TMm1 modes and those 
modes may be ignored. 

At each split frequency the resonator field corresponds 
to a separate TEM mode having no Ez and Hz field 
components. Really, they are about 4 510 10− −÷  in 
comparison with the amplitudes of transverse components. 
Based on this fact, the relationships between the 
amplitudes of TEm1 and TMm1 modes providing the 
conditions Ez=0 and Hz=0 are easily set. Due to them, the 
TEM mode field may be presented as the superposition of 
“equivalent” TEm1 modes only, the amplitudes of which 
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are combinations of the ones for the initial set of TEm1 and 
TMm1 modes.  

Let’s point out that the technique of searching for the 
degenerated TEM modes used here simultaneously deals 
away with the well-known orthogonalization problem, 
since the found field distributions are orthogonal accurate 
to within 5 610 10− −÷ . To check the adequacy of the data 
being obtained a set of internal criteria was developed. For 
example, integrating the TEM field components Ex or Ey 
along a way from one a line enclosure wall to other allows 
estimating a level of “potentiality” of the found TEM 
mode fields (such integrals should be zero). It turned out 
that corresponding conditions are met accurate to 

6 710 10− −÷  if 10 - 15 “equivalent” TEm1 modes are taken 
into account within partial domains. 

The viability of the created algorithm for calculating the 
TEM modes fields are demonstrated by Fig. 3 where the 
brightness pictures of Ex-component distributions are 
presented only for one of some TEM modes for the lines 
shown in Fig. 2 (A, B, and C). The lighter areas in Figs. 3 
correspond to more intensive fields, the areas where the 
field phase is 0 or π  are highlighted by different colors. 

IV. CALCULATION OF LINE-TO-LINE JUNCTIONS 

The created algorithms of searching higher-order and 
TEM modes spectrum provide the possibility of 
calculation of the scattering matrix of a junction of two 
multi-conductor lines by the conventional mode-matching 
method. At calculating the needed coupling integrals, a 
preliminary analysis of reciprocal crossings of partial sub-
domains of the enclosing line and the line being enclosed 
is carried out. In doing so, the coupling integrals values 
are defined as a sum of integrals over all the above-
mentioned crossing areas. 

V. NUMERICAL RESULTS 

The cascaded assembling of the set of line-to-line 
junctions is done by the generalized S-matrix technique to 
obtain the full-wave model of the integrated circuit. The 
calculation of the frequency response does not require a 
lot of the CPU time because the coupling integrals for the 
needed line-to-line junctions are calculated once.  

The response of the loop-element within the 120×14.5 
mils dielectric-filled enclosure ( ε =9.1) is shown in Fig. 4. 
The conductor thickness t=0.03 mils. The longitudinal size 
of the loop (between reference planes of input and output 
lines) is 120 mils. 

More complex circuits have been also considered. One 
of them is a third-order low-pass filter (see Fig. 5). 
According to the proposed approach, it is segmented in 

twelve multi-conductor lines that generate eleven line-to-
line junctions to be calculated. The filter is placed into the 
128×36 mils enclosure. The values of t and ε  are the 
same as for the above element. The frequency response of 
the filter is shown in Fig. 6. The computed response is 
close to that obtained by the EMSIGHT software based on 
the 2D moment method with roof-top basis functions. 
Such methods (EMSIGHT) cannot take into account a 
finite metal thickness and are extremely time-consuming 
compared to the proposed method. In particular, it takes 
about 6 hours of CPU time on a Pentium II/450 MHz PC 
for calculating 25 frequency points. The proposed 
approach allows to perform the low-pass filter analysis 
including the calculation of the lines’ mode spectrums, 
coupling integrals for the line-to-line junctions (relative to 
55-65 modes in the connected lines), and the response at 
200 frequency points during 3.5 hours with the same PC.  

VI. CONCLUSION 

The proposed longitudinal decomposition approach 
gives a tool for an exact analysis of electromagnetic 
properties and potential of the microwave multi-layer 
circuits of various configurations. This approach has some 
advantages over the known approaches based on the 
method of moments and other direct numerical methods. 
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Fig. 1. Multi-layer loop-type element in a dielectric-filled 
rectangular enclosure. 
 

  
Fig. 2. Cross-sections of one- and multi-conductor lines forming 
fragments of the loop-type element. 
 
 

 
 

 
 

 
 

Fig. 3. Distributions of xE -field components for some TEM 
modes in various lines. 
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Fig. 4. Frequency response of the loop-type element. 
 
 

 
 

Fig. 5. The third-order multi-layer low-pass filter. 
 
 

1 2 3 4 5 6 7 8 9
60

50

40

30

20

10

0

|S11|
|S21||S

11
|, 

|S
21

|, 
dB

Frequency, GHz  
 

Fig. 6. Comparison of the results obtained by the present method 
(black curves) and by the method of moments (red curves). 
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